Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460804

RESUMO

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Camundongos , Zika virus/genética , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Transdução de Sinais , Trifosfato de Adenosina
2.
Glia ; 72(3): 546-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987116

RESUMO

Although brain scars in adults have been extensively studied, there is less data available regarding scar formation during the neonatal period, and the involvement of peripheral immune cells in this process remains unexplored in neonates. Using a murine model of neonatal hypoxic-ischemic encephalopathy (HIE) and confocal microscopy, we characterized the scarring process and examined the recruitment of peripheral immune cells to cortical and hippocampal scars for up to 1 year post-insult. Regional differences in scar formation were observed, including the presence of reticular fibrotic networks in the cortex and perivascular fibrosis in the hippocampus. We identified chemokines with chronically elevated levels in both regions and demonstrated, through a parabiosis-based strategy, the recruitment of lymphocytes, neutrophils, and monocyte-derived macrophages to the scars several weeks after the neonatal insult. After 1 year, however, neutrophils and lymphocytes were absent from the scars. Our data indicate that peripheral immune cells are transient components of HIE-induced brain scars, opening up new possibilities for late therapeutic interventions.


Assuntos
Cicatriz , Hipóxia-Isquemia Encefálica , Adulto , Animais , Humanos , Camundongos , Cicatriz/patologia , Encéfalo/patologia , Macrófagos , Hipóxia-Isquemia Encefálica/patologia
3.
Stroke ; 52(5): 1788-1797, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33827248

RESUMO

Background and Purpose: Heme is a red blood cell component released in the brain parenchyma following intracerebral hemorrhage. However, the study of the pathophysiological mechanisms triggered by heme in the brain is hampered by the lack of well-established in vivo models of intracerebral heme injection. This study aims to optimize and characterize a protocol of intrastriatal heme injection in mice, with a focus on the induction of lipid peroxidation, neuroinflammation and, ultimately, sensorimotor deficits. We also evaluated the involvement of NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), an inflammasome sensor, in the behavior deficits induced by heme in this model. Methods: Mice were injected with heme in the striatum for the evaluation of neuroinflammation and brain damage through histological and biochemical techniques. Immunoblot was used to evaluate the expression of proteins involved in heme/iron metabolism and antioxidant responses and the activation of the MAPK (mitogen-activated protein kinase) signaling pathway. For the assessment of neurological function, we followed-up heme-injected mice for 2 weeks using the rotarod, elevated body swing, and cylinder tests. Mice injected with the vehicle (sham), or autologous blood were used as controls. Results: Heme induced lipid peroxidation and inflammation in the brain. Moreover, heme increased the expression of HO-1 (heme oxygenase-1), ferritin, p62, and superoxide dismutase 2, and activated the MAPK signaling pathway promoting pro-IL (interleukin)-1ß production and its cleavage to the active form. Heme-injected mice exhibited signs of brain damage and reactive astrogliosis around the injection site. Behavior deficits were observed after heme or autologous blood injection in comparison to sham-operated controls. In addition, behavior deficits and IL-1ß production were reduced in Nlrp3 knockout mice in comparison to wild-type mice. Conclusions: Our results show that intracerebral heme injection induces neuroinflammation, and neurological deficits, in an NLRP3-dependent manner, suggesting that this is a feasible model to evaluate the role of heme in neurological disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Heme/administração & dosagem , Peroxidação de Lipídeos/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...